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Abstract

The crystal structures of two previously unknown bulk
phases in the Ga—-In-Sn—O system have recently been
solved using direct methods applied to electron diffrac-
tion intensities. In both cases, phasing of dynamical
diffraction intensities clearly indicated the positions of
O atoms in the crystal structures. It is shown here that a
correlation between the dynamical diffraction ampli-
tudes and the Fourier components of |1 — v(r)| enables
direct methods using dynamical intensities to restore
structural information present in |1 — ¥(r)|. Both the
presence of atom-like peaks in |1 — v(x)| as well as the
emphasis of light atoms are explained using electron
channeling theory. Similar results can be expected for
any structure consisting of well resolved atomic columns
parallel to the zone-axis direction for which data are
recorded. With (Ga, In),SnOs as a model structure, it is
shown that the combination of strongly dynamical
electron diffraction with direct methods is a powerful
technique for detecting light-atom positions in bulk
inorganic crystal structures without the need to grow
single crystals.

1. Introduction

Direct methods for crystal structure determination are
unique in their ability to accurately determine the
positions of atoms within a crystalline unit cell using
only measured diffraction amplitudes. The power of this
approach is evident in the long list of organic and
inorganic structures that have been solved using direct
methods. The theoretical basis of direct methods has
been developed under the assumption that the diffrac-
tion amplitudes are purely kinematical and the prior
application of direct methods has thus largely been to
cases in which complete kinematical diffraction data sets
are available from single-crystal X-ray measurements.
Such measurements are associated with significant
experimental effort and are dependent on the ability to
obtain a single crystal. This has been a motivation for
recent work applying direct methods to electron
diffraction data for solving organic structures (Dorset,
1996; Gilmore et al., 1993) and surface reconstructions
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(Marks et al., 1997; Landree et al., 1998; Collazo-Davila
et al., 1997; Gilmore et al., 1997). While surface diffrac-
tion data are rather well established to be very close to
kinematical in character (Tanishiro & Takayanagi, 1989;
Marks et al., 1991), there is always a worry with bulk
applications. One cannot argue that the diffraction is
kinematical based solely upon the fact that only light
atoms are present in moderately thin samples. The
existence of kinematical conditions may at best be
asserted if pseudo-random atomic positions lead to
cancellation of dynamical effects (Marks, 1988).
Recently, we have reported the solution of a bulk
inorganic (Ga, In),SnOs ceramic oxide structure using
direct methods applied to electron diffraction data
(Sinkler et al., 1998). This represents an extension of
direct methods to a case where dynamical effects cannot
be treated as an error of limited significance, but rather
dominate the data causing them to deviate severely from
the kinematical case. The procedure followed in solving
the (Ga, In),SnOs structure was quite straightforward:
phasing of electron diffraction amplitudes was per-
formed using a minimum relative entropy algorithm
described elsewhere (Marks & Landree, 1998). The
direct method was not performed a priori but rather the
phases of some low-order beams were fixed using
information from the Fourier transform of a high-reso-
lution transmission-electron-microscope (HRTEM)
image. One of the top-ranked phasing solutions is shown
in Fig. 1 (Sinkler et al., 1998). Superimposed on the
figure is a ball-and-stick projection of the (Ga, In),SnOs
structure, showing O-atom positions that were subse-
quently confirmed using powder neutron diffraction
(Sinkler et al., 1998; Edwards et al., 1998). As is apparent
from Fig. 1, strong peaks occur in the phasing solution at
the positions of the O atoms in the structure. The
detection of O-atom positions by direct methods is
evidently a dynamical effect, as it is contrary to what is
expected in the kinematical case, namely an emphasis of
the heavier cation atoms in the structure. This indicates
that, rather than constituting an undesirable error
source in the data, dynamical effects can in fact be useful
in direct methods. This contrasts with earlier work using
direct methods of electron diffraction intensities (Fan et
al.,, 1991; Fu et al., 1994; Hu et al., 1992; Dong et al.,
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1992), in which special care was taken to avoid dyna-
mical effects by using thin specimen regions and the
results were interpreted within a kinematical approx-
imation. We have recently solved an additional structure
in the Ga-In-Sn-O system using the same approach
(Edwards et al., 1998), adding further weight to the
viability of direct methods using dynamical diffraction
data as a technique for solving inorganic structures, and
in particular for locating light-element atom positions in
ceramics.

The present work explores the physical basis for the
ability of direct methods in combination with dynamical
electron diffraction to locate light atoms. We show that
direct methods do not restore the complex exit wave
¥(r) in real space or the crystal potential but instead the
modulus of the Babinet, or |1 — y(r)|, which corre-
sponds to the most probable distribution, a reasonably
good approximation to the diffracted wave for moder-
ately thin samples (<200 A). The enhanced detectability
of the light atoms arises as a consequence of dynamical
diffraction and is modeled using channeling theory. This
also rationalizes previous successes in determining
organic structures via direct methods using electron
diffraction.

The outline of this paper is as follows. First, we will
briefly review some of the key features of the channeling
theory of electron diffraction, which leads to the

DIRECT METHODS AND DYNAMICAL ELECTRON DIFFRACTION DATA

conclusions that on a zone axis the wavefunction is flat,
except around the sites of the atomic strings. In §3, it is
demonstrated that the information content inherent in
the dynamical intensities is to a good approximation that
visible as peaks in |1 — v(r)|. In addition, the viability of
incorporating information from HRTEM images to
allow fixing of some phases is discussed. Following this,
calculated |1 — ¥(r)| for the (Ga, In),SnOs structure are
shown and the tendency for peaks to appear in
|1 — v(r)| at atom positions, and more particularly at
light-atom positions, in oxide structures is explained in
terms of electron channeling theory. Finally, phasing
solutions are presented from both simulated and
experimental diffraction data, and a correspondence is
shown between peaks in the solutions and in |1 — ¥(x)|.

2. Theory 1. Interpretation of dynamical exit waves using
channeling theory

The central characteristics of the electron wavefunction
Y¥(r), the occurrence of oscillations at atom positions as
a function of crystal thickness and the dependence of the
frequency and amplitude of the oscillations on atomic
number can be explained using electron channeling
theory (Berry, 1971; Kambe et al, 1974; Tamura &
Ohtsuki, 1974; Fujimoto, 1978; Gemmell, 1974; Kambe,
1982; Ohtsuki, 1983; Marks, 1985; Van Dyck, 1985; Van

Fig. 1. Phasing solution from experi-
mental data for (Ga, In),SnOs
(Sinkler et al., 1998). Superimposed
is a model of the neutron-refined
structure showing O-atom positions.
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Dyck & Op de Beeck, 1996). Channeling theory starts
from the premise that all diffraction contributing to the
exit wave is from the zero-order Laue zone for a given
zone-axis orientation. This approximation significantly
reduces the complexity of the Bloch-wave solution to
the Schroedinger equation for fast electrons, while
preserving in quantitative form many of its features. By
making the channeling approximation, the total wave
function is reduced to

1//(R» Z) = Z qu)n(R) eXp[_”T(En/EO)kZ]’ (1)

in which R is a two-dimensional vector perpendicular to
the incident-beam direction z, E, is the incident-beam
energy and k =[(2mE,)/h]'* is the relativistically
corrected incident-beam wavevector. Equation (1)
expresses the total wave as a superposition of two-
dimensional Bloch waves, each having a characteristic
oscillation along z. The strength of the oscillation is
given by the value of E,. In terms of the exact Bloch-
wave theory (Hirsch et al., 1977), E, is given by
E, = E — (h*/2m)k2, with k_ being the z component of
the wave (parallel to the incident-beam direction) and E
the total Bloch-wave energy. The E, are therefore the
quantized transverse or in-plane energies of the wave.
By direct substitution of (1) into the three-dimensional
Schroedinger equation for fast electrons (Hirsch et al.,
1977; Spence, 1988), one obtains an equation for the
two-dimensional Bloch functions {®,(R)} and the
corresponding energies {E, }:

Vid + (87°m/h*)[E — p(R)]® = 0. )

In this equation, V% is the Laplace operator in two
dimensions and p(R) is the specimen potential averaged
along the beam direction (Lindhard or string potential)
(Ohtsuki, 1983; Gemmell, 1974) given by

oo
p(R) = (1/d) [ p(x,y,z)dz, ®3)
—00
in which d is the repeat distance along the electron
beam.

Equation (2) has been investigated previously (Berry,
1971; Kambe et al., 1974; Fujimoto, 1978; Van Dyck,
1985; Van Dyck & Op de Beeck, 1996) and, for crys-
talline projections in which the atoms are located in
straight well separated atomic columns aligned with the
electron beam, there are generally only one or two
localized bound-state solutions &; to (2). When the
overlap between neighboring columns is minimal, the
bound states are radially symmetric analogous to atomic
1s and 2s states. In addition to these bound states, there
is a ‘continuum’ of unbound states with higher trans-
verse energy. The unbound states, which dominate in the
flat interstitial regions, are orthogonal to the bound
states and may be rigorously obtained using the orthog-
onalized plane-wave method (OPW) (Ziman, 1972).
Rather than interacting with the full potential, the OPW
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states interact with the standard ‘pseudopotential’ with
substantial cancellation of the deep well at the atomic
sites — as such they are almost kinematical for a
reasonably thin sample. Bearing this in mind, an
approximation to the unbound states may be obtained
by making use of the boundary condition at z = 0, which
is >, C;®; = 1 (for unit plane-wave incidence). One can
then rewrite (1) as (Van Dyck & Op de Beeck, 1996)

Y(R,z) =1+3 C,®,(R){exp[—in(E,/Ej)kz] — 1}.

4)

If the sum over all states is now replaced by a single
bound state ®,, one obtains

1= ¥(R, z) = C, @, {1 — exp[—in(E, /Eg)kz]}.  (5)

This satisfies the boundary condition and is equivalent
to approximating the OPW states with a single unbound
state &, with £ =0 and C,®, =1 — C,®,. The same
equation has also been derived by Van Dyck & Op de
Beeck (1996), using different arguments. It represents
the Babinet function 1 — y(r) for well separated atomic
columns in the case in which a single channeling state ®,,
is dominant and will work well for moderately thin
crystals, far better than a simple kinematical model. (For
thicker crystals, the unbound states cannot be ignored.)
For atomic number Z < 35 and d =~ 3 A, a single 1°s
channeling state is dominant for foils less than 200 A
thick because either there is no 2s state or the 2s energy
is very small.

Equation (2) can be readily solved numerically for the
case of an isolated atomic column using the separation
of variables employed by Tamura & Ohtsuki (1974) and
atomic potentials obtained by inverting the electron
scattering factors of Doyle & Turner (1968).1 Fig. 2
shows a plot of the eigenvalues of the 1s and 2s states for
d = 3.0 A and 300 kV accelerating voltage. A trend of
linearly increasing eigenvalues with increasing Z is
observed, as also reported by Van Dyck & Op de Beeck
(1996). The channeling theory gives a satisfactory
explanation for the oscillations with depth that char-
acterize the electron exit wave and the main depen-
dencies of these oscillations. This is illustrated in Fig. 2
by comparing the 1s channeling eigenvalues with
2E,A/7', where 7' is the period of the oscillations in
|1 — ¥(r)| as a function of crystal thickness in multislice
simulations for an isolated atomic column. A quantita-
tive agreement with the multislice simulations is found
for atomic numbers less than approximately 26. For
larger-Z elements, the excitation errors, which are
neglected in the channeling approximation, become
more important and cause the channeling eigenvalues to
underestimate the actual oscillation frequency. The role

t Fortran code for calculating channeling eigenvalues for an

atomic column can be downloaded at www.numis.nwu.edu/ftp/direct/
channeling.
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of excitation errors in causing disagreement at large Z is
consistent with improved agreement for both increasing
accelerating voltage and decreasing interatomic spacing
d.

In the case that the separation of neighboring atomic
columns is sufficient to minimize overlap of the poten-
tials (and thus the bound-state wavefunctions), one may
consider the total wavefunction of a crystal as made up
of the separate contributions of individual atomic
column states. This has been suggested by Van Dyck &
Op de Beek (1996) and results in a Babinet wavefunc-
tion given by

1—-y¥(R,z)= Z C®,(R — R){1 — exp[—in(E;/ Ey)kz]}

(6)

where ®; is the appropriate bound-state eigenfunction
for the atomic column centered at R; Experimental
electron diffraction data consist of the amplitudes
|W(h)|, which are the same in their modulus (except the
direct beam) as the Fourier coefficients of the Babinet.
Because the Babinet oscillates rapidly with depth, the
diffraction data will depend sensitively on thickness and
will not represent a fixed characteristic of the sample
structure, such as the electrostatic potential p(r) in the
case of kinematical scattering. In spite of the complex
oscillatory dependence on crystal thickness (with
Z-dependent frequency), channeling theory and in
particular equation (6) permit one to generalize that
1 — ¥(r) will have a form that is relatively constant and
close to zero in the interatomic regions provided that the
unbound states can be ignored. The Babinet will be

-500 T T T T T T T T
% 1s energy from oscillations in multislice | y(r)-11 A
[ w 1s channeling eigenvalue ¢
400 4 2s channeling eigenvalue i
-300 - k
>
o -
-200 —
-100 | E
0
0

Atomic number Z

Fig. 2. Plot of channeling eigenvalues for single atomic columns for
300 kV incident electrons and atomic spacing d = 3 A along the
columns. For comparison, the values of 2EA/z’ are also plotted,
where 7’ is the oscillation periodicity in [y(r) — 1| at atomic columns
obtained from multislice calculations.
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peaked near the projected positions of atomic columns
and the phase will vary linearly as a function of thick-
ness.

3. Theory II. Interpretation of phasing results from
strongly dynamical amplitudes

Dynamical electron diffraction amplitudes correspond
to a real-space electron exit wave ¥/(r) that is in general
complex. This contrasts with the kinematical case in
which

F(=h) = F*(h) ™

(F being the structure factor, h a reciprocal-lattice
vector). Because of (7), the Fourier transform (FT) of
F(h) is real in the kinematical case and is the electro-
static potential p(r) (for electrons) or electron density
(for X-rays). In applying direct methods to electron
diffraction, the complex nature of the wave in real space
is suppressed by insisting that F(—h) = F*(h) in the
solutions. While this can be justified by a kinematical
approximation, the presence of strong dynamical effects
in the diffraction data combined with (7) causes a
departure of the phasing solutions from any actual
physical distribution.

From the above, one would presume that direct
methods cannot be applied to dynamical diffraction but
we will show here that this is not correct. To see why, one
needs to look rather deeper at what direct methods
actually do, not at a simple level of ¥; or X, relation-
ships but in the general case. The basic theory of direct
methods arises from probabilistic relationships obeyed
by a set of (pseudo-random) ‘atomistic’ peaks in real
space, ideally & functions, surrounded by regions of
essentially zero amplitude. Using any of a number of
different multisolution techniques, plausible phases are
obtained for the diffracted amplitudes that are highly
probable based upon statistical relationships. If the
problem is well posed, e.g. approximately correct
removal of the atomic scattering factors, information to
about 1 A~! and small measurement errors, the phases
will approach the level where a restoration of the
wavefunction [or p(r)] is achieved.

When one has dynamical diffraction, at least for a
moderately thin sample (<200 A), one still has features
in the channeling eigenfunctions that are localized about
projected atomic columns. However, the electron wave
is complex in real space rather than real. Also, in the
regions away from the atoms, instead of having zero
amplitude the wavefunction is essentially constant. This
constant term is removed by considering, instead of
Y¥(r), the Babinet 1 — y(r), which as shown above is
essentially zero away from the atoms, and has a peaked
form near atomic columns. The Babinet’s Fourier coef-
ficients are identical in their modulus to those of ¥(r)
(except the transmitted beam). If we consider the
probability of a given Babinet in an information-theory
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sense, this probability is independent of the phase. Using
classical maximum-entropy arguments, the most prob-
able distribution consistent with the data will maximize
the entropy S, given by

5= =Xl -y (11— v/ St - yol] ®

A distribution consistent with this may also be obtained
by minimizing the relative entropy S,(r) given by (Marks
& Landree, 1998)
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S.(r) = |1 = Y(o)| In[|1 — ¥(r)|/e(|1 — ¥(x)])]
+ (11 = ¥())). )

The use of (9) to minimize relative entropy, and the
relationship between (8) and (9) are described in more
detail in Appendix A. Note that the actual phase of
1 — ¢(r) does not come into either of the above
expressions. This suggests that direct methods will
restore the function |1 — v(r)|, provided that the Fourier
coefficients of the latter are comparable to the measured
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Fig. 3. (a)—(c) Plots of Fourier coefficients of [/(r) — 1| against diffraction amplitudes [¥(h)| for all unique spots h = (/0/) [except (000)] in the
[010] zone axis of the (Ga, In),SnOs structure, with [h| <1 A~'. All quantities are calculated using the multislice method. (a) 100 A thickness.
(b) 200 A thickness. (c) 300 A thickness. (d) For comparison with (a)-(c), a plot of the kinematical structure-factor amplitudes |F(h)| against

[¥(h)| at 100 A thickness is shown.
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In the kinematical case, |1 — ¥(r)| is proportional to
the electrostatic potential p(r) and the Fourier coeffi-
cients of |1 — 1(r)| are therefore exactly proportional to
the structure factors |F(h)|. Whereas for a dynamical exit
wave the Fourier coefficients of |1 — y(r)| are not
identical to the diffraction amplitudes |W(h)|, the two
sets tend nevertheless to be correlated over thicknesses
well beyond those for which the kinematical approxi-
mation, ie. |W(h)| >~ FT(o(r)), breaks down. This is
illustrated for the example of (Ga, In),SnOs in Figs.
3(a)-(c), which show plots of the diffraction amplitudes
|[W(h)| calculated using multislice versus the Fourier
components of [1 — y(r)|, for thicknesses of 100, 200 and
300 A. The two sets of Fourier amplitudes are closely
correlated to at least 200 A particularly for the stronger
beams and a significant loss of correlation is found only
for thicknesses near 300 A. For comparison, Fig. 3(d)
shows that there is little or no correlation between [W(h)|
and |F(h)| = FT(p(r)) at 100 A: simple restoration of
the specimen potential using data for 100 A thickness is
out of the question. However, because of the significant
correlation between the amplitudes |¥(h)| and
FT(|1 — ¥(r)|), structural information contained in the
peaks of |1 — i(r)| represent structural features that
may be found using direct methods.

An additional real-space distribution that is of
importance to direct methods in the present work is that
of a HRTEM image, as it is this distribution I(r) at
Scherzer defocus that is used to fix the phases of some
beams input into the direct-methods algorithm. The use
of HRTEM information to fix the phases of some
diffracted beams for direct methods has been performed
previously (Fan et al., 1991; Fu et al., 1994; Hu et al.,
1992; Dong et al., 1992), but always within the frame-
work of a kinematical approximation. On first consid-
eration, it may seem surprising that image phases can be
used towards restoring |1 — i(r)] without special
precautions to ensure that both diffraction and image
data represent the same thickness. Phases from HRTEM
taken at Scherzer defocus can however be incorporated,
as long as the phases chosen are from strong beams and
are restricted to small spatial frequency to minimize
dynamical and non-linear imaging effects. This can again
be understood based on the example of (Ga, In),SnOs.
From the centrosymmetry of the structure, the
FT(|1 — v(r)|) has all phases equal to either 0 or 180°.
The incorporation of phases from the image toward a
restoration of |1 — 1(r)| depends on the beams chosen
having as few as possible phase switches with depth. The
number of phase switches in a sample of 200 A thickness
is plotted for all (h,0, l) Fourier components of
1 —(x)] with |h| <1 A~ against the kinematical
diffraction amplitude |F(h)| in Fig. 4(a) and against the
spatial frequency |h| in Fig. 4(b). It can be seen from the
plots that the tendency for a Fourier component of
[1 — ¥ (r)| to switch phase increases with both decreasing
amplitude and increasing spatial frequency. If one
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regards only those beams that are in the top 20% of
1nten51tles and which have spatial frequencies less than
0.45 A ,only 5 of 17 or 30% show any phase switch in a
200 A thickness. These beams are therefore pseudo-
kinematical in the sense that, while their intensities are
dynamical, their phases are kinematical or static with
depth. For beams with frequencies below the Scherzer
resolution limit, typically in the range of 0.5 A7, the
effect of the lens optics on the image phases is s1mply the
addition of a factor of m. If in obtaining phase infor-
mation from a HRTEM image one is careful to choose
strong beams of small spatial frequency, these phases
can be used with relative confidence as representative of
[1 — ¥(r)| over a broad range of thickness. (Of course,
one also has to be careful to avoid non-linear imaging
effects which tend to be more important at higher spatial
frequencies.)
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Fig. 4. Plots of the number of phase switches with depth (0 to 180° or
vice versa) in the Fourier coefficients of |¢(r) — 1| for points h =
(hOl) in the [010] zone axis of the (Ga,In),SnOs structure.
(a) Dependence on kinematical scattering amplitude |F(h)|.
(b) Dependence on spatial frequency |h|.
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Table 1. Neutron-refined crystal structure data for
(Ga, In),SnOs (Sinkler et al., 1998)

Space group P2/m (No. 10), a = 11.68919 (18), b = 3.16734 (5), ¢
10.73068 (15) A, y = 98.9997 (15)°. R, = 0.0495, wR, = 0.0761, x*
2.164.

Atom X y z U;x100 (A)
Snl 0.0 0.0 0.0 1.2 (30)
Sn2 0.5 0.0 0.0 —0.04 (21)
Sn3 0.5918 (6) 0.5 0.3112 (7) 0.35 (16)
In/Galt 0.3281 (6) 0.0 0.3859 (7) 0.09 (25)
In/Ga2% 0.0756 (8) 0.5 0.3053 (9) 1.10 (30)
Gal 0.1500 (5) 0.0 0.6022 (6) 0.94 (18)
Ga2 0.2624 (5) 0.5 0.0869 (5) 0.41 (17)
o1 0.3320 (7) 0.0 0.0472 (8) 1.09 (24)
02 0.0365 (6) 0.0 0.1941 (8) 1.14 (22)
03 0.4789 (7) 0.0 0.3245 (8) 1.37 (24)
04 0.7096 (6) 0.0 0.3076 (6) 0.63 (17)
05 0.1490 (7) 0.0 0.4287 (9) 1.77 (27)
06 0.1081 (7) 0.5 0.0003 (7) 0.24 (17)
o7 0.5515 (7) 0.5 0.1209 (8) 0.96 (23)
08 0.2570 (6) 0.5 0.2617 (8) 0.41 (19)
09 0.3586 (6) 0.5 0.4987 (7) 1.17 (19)
010 0.0768 (7) 0.5 0.6272 (8) 0.65 (21)

+ Indium occupancy 0.48. % Indium occupancy 0.72.

Based on the important role of |1 — ¥(r)| as the
function upon which direct methods act, [1 — (r)| was
investigated in the model case of the (Ga, In),SnOs
structure shown in Fig. 5. The atomic coordinates for
(Ga, In),SnO5 obtained by neutron refinement are listed
in Table 1 (Sinkler et al., 1998). Multislice calculations
for obtaining |1 — v(r)| were performed using NUMIS
multislice software developed at Northwestern Univer-
sity. The calculations were performed for 300 kV inci-
dent radiation and did not include absorption effects.
Thermal vibration was included in the calculation
corresponding to Debye-Waller factors of B = 0.3 A?
for the metal atoms and 0.5 A? for O atoms. Examples of
[T — ¥(r)| calculated for several thicknesses are shown
in Figs. 6(a)—(f). By comparison with Fig. 5, it can be
seen that up to thicknesses greater than 200 A the peaks
in |1 — ¥ (r)| are located at atom positions. As predicted
from channeling theory, the peaks show a tendency to
oscillate with thickness such that for a given thickness
they are located at a subset of the atoms in the structure.
For instance, in Fig. 6(b), the Ga atoms appear parti-
cularly bright, Sn atoms are weak and the O atoms have
peaks roughly equal to those at Ga/In positions, while, in
Fig. 6(c), the Sn atoms are weak, Ga and Ga/In atoms
are virtually extinct and the strongest peaks are at
O-atom positions. At all thicknesses between about 40
and 200 slices (63 to 320 A), strong peaks were found to
occur at O-atom positions. Fig. 7 investigates peak
strength versus thickness in more detail, showing a plot
of |1 — y(r)| for r at the positions of several atomic
columns in the structure as a function of depth. There is
a well defined oscillation in the wave amplitude at the
atom positions and the period of the oscillation
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decreases as the atomic number Z increases. In addition,
the heights of the peaks tend to increase with decreasing
atomic number, consistent with the observed strong
peaks at O-atom positions in |1 — ¥(r)| over a broad
range of thicknesses.

The emphasis of light-atom positions in |1 — y(r)]
results from a combination of two effects, one of which
emerges from the channeling formalism and the second
being the resolution dependence of |1 — ¥(r)|. In the
channeling approximation for an atomic column for
which a single bound state is dominant, |1 — y¥(r)| has
the form

11— ¥(r)] = C,®,(R)(2 — 2 cos 2K 'z)"/?,

as can be obtained directly from (6) using
K' = E k/2E,. The limiting form of (10) as z
approaches zero is

11— Y@ = C,P,(R)27K 2.

(10)

(1n

One can obtain an approximate form for ®,(R) by
comparing the slope of |1 — v(r)| as z approaches zero
with the expression

11— ¥(0)] = n{p(R)/Eglkz

obtained from the weak-phase-object approximation.
This leads to

C,®4(R) = p(R)/E,. (12)

The form of the 1s wave thus mimics that of the
projected atomic potential. Using (12) to replace
C,®,(R) in (10), one arrives at an oscillating |1 — (r)|
with period 2E,A/E,, which peaks with depth at an
amplitude of 2p(R)/E,. The variation of the amplitude
with Z is a second-order effect, as E, tends to scale with
the depth of the potential p(R). Nevertheless, within the
channeling approximation, the amplitude does decrease

O oxygen e tin

o gallium o indium/gallium

Fig. 5. View of the (Ga, In),SnOs structure in [010] projection.
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somewhat with increasing Z. This is shown in Table 2,
which compares the predicted amplitude at R=10
(center of the atomic column) with that obtained from
multislice calculations at both 6 and 1 A~ resolutions,
where resolution is defined here and in the following as

DIRECT METHODS AND DYNAMICAL ELECTRON DIFFRACTION DATA

2sin6,,,/A. While the channeling theory significantly

overestimates the amplitude due to its neglect of exci-
tation errors, the trend as well as the relative amplitudes
for different Z are in good agreement with the multislice
values for 6 A™! resolution. From Table 2, one can see

Fig. 6. Exit waves |¥(r) — 1|
calculated using multislice
for the (Ga,In),SnOs
structure. (a) 8slices. (b)
24 slices. (c) 48 slices. (d)
72 slices. (e) 128 slices. (f)
224 slices. The slice thick-
ness is 1.58 A.
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Table 2. Amplitude of the first maximum with depth in
|¥(r) — 1| at the center of an atomic column

Multislice amplitude, Multislice amplitude,

Atom 2p(0)/E, 6 A™! resolution 1 A™! resolution
o 8.77 497 4.46169
Al 6.74 4.85 3.25662
K 5.62 4.49 2.64991
Ti 5.35 4.29 2.44803
Fe 5.57 4.13 2.26356
Ga 577 3.93 2.09908
Rb 5.32 3.66 1.96289
Mo 5.09 3.46 1.87577
Sn 513 333 1.79342
Eu 4.74 2.95 1.63094
Au 4.88 2.61 1.49058

that the Z dependence is further enhanced by reducing
the resolution. The damping effect of limiting the reso-
lution to 1 A™' is much more pronounced for heavy
atoms, for which a larger proportion of the scattering is
to large angles. This causes an additional reduction in
the amplitude at the positions of heavy cations, relative
to that at oxygen.

4.0
2.0
) (a) oxygen

w 00
c
£ F i
=2
o]
o
Q
£ 20 ]
S
®
k]
E - 4
k]
c
3 (b) gallium
w
S

(¢) .4 gallium, .6 indium

201 1

| ‘ | | (d) tinl

0 50 100 150 200
thickness (slices)

Fig. 7. Amplitude of |[/(r) — 1| as a function of depth at the centers of
several atomic columns in the (Ga, In),SnOs structure.
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Table 3. Experimental electron diffraction amplitudes for
(Ga, In),SnOs [010] zone axis (arbitrary scaling)

hk,l |W(h kD) hk,l [W(h,k.D)|
4,02 1.0000 -1,03 0.1347
—503 0.8399 —502 0.1323
-1,05 0.7977 202 0.1316
0,03 0.7058 303 0.1223
—2,0.1 0.6684 —3,09 0.1206
—500 0.5020 —7,04 0.1191
—2,04 0.4525 —506 0.1177
—40,1 0.3977 -3,05 0.1175
—6,02 0.3881 1,04 0.1158
3,04 0.3316 -7,0,0 0.1147
~1,0,1 0.3220 —504 0.1127
—2,00 0.3122 —205 0.1094
—4,04 0.3070 706 0.1093
1,0,1 0.2381 8,04 0.1063
—303 0.2378 —405 0.1055
1,0,5 0.2262 703 0.1044
2,03 0.2221 2,04 0.1026
—302 0.2194 6,0,5 0.1005
30,1 0.2192 50,1 0.1003
—402 0.2183 —6,04 0.1001
-30,1 02182 —1,04 0.0980
~1,02 0.2150 —408 0.0977
—6,0,5 0.2065 205 0.0964
—7.0,7 0.2020 702 0.0953
—3,00 0.1989 —6,0,0 0.0942
—203 0.1964 00,6 0.0942
—2,07 0.1897 —8,0.,5 0.0936
2,0,6 0.1847 —6,03 0.0910
—6,0.8 0.1828 -7,03 0.0879
6,02 0.1730 403 0.0868
405 0.1704 —6,0,1 0.0829
8,0,1 0.1703 406 0.0787
6,0,1 0.1606 —7,0.1 0.0784
1,02 0.1491 00,5 0.0749
1,03 0.1488 0,02 0.0748
307 0.1445 506 0.0743
—3,04 0.1414 1,08 0.0721
—3,06 0.1402 —4,0,0 0.0716
40,1 0.1401 20,1 0.0687
—8,02 0.1373 70,1 0.0675
0,04 0.1364

4. Application of direct methods to calculated and
experimental dynamical amplitudes

Direct methods were performed using both experi-
mental electron diffraction amplitudes from the
(Ga, In),SnOs structure (Table 3) as well as diffraction
amplitudes for the same structure calculated using the
multislice method. The direct methods employed a
minimum-relative-entropy ~ functional (Marks &
Landree, 1998), but similar results may be expected with
other direct-methods algorithms. The basis set consisted
of phases fixed based on the HRTEM image (see below),
plus an additional set of 16 fixed phases that were
optimized using a genetic algorithm (Holland, 1975;
Landree et al., 1997). This results in multiple solutions
because each of the possible 2'° sets of initial phases
yields a different solution. The direct methods were in
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Table 4. Comparison of phases obtained from HRTEM with calculated phases of Fourier components of |I — y(r)|
for a number of thicknesses (in slices)

(h0l) beams of (Ga, In),SnOs (4 = 0°; — = 180°).

h,l HR 2 8 16 24 40 48 64

4,-1
03
2,—1
42
2,0
50
3,—1
13
1,-2
3,-3
1,—1

32

wn
(o))

I+ +
|+ + +

|+ ++

|+ ++

|+ + |

|+ +

|+ + |

|+ + |

|+ +

L+ +

I+ + 1
I+ + 1
I+ + 1
I+ + 1
I+ + 1
I+ + 1
I+ + 1
I+ + 1
I+ ++ 1
I+ + 1

+++
++
++
++
++
++

+

their main features identical to those employed with
kinematical diffraction intensities and minimize the
relative entropy by expanding (9) as the series (with
iteration n)

11— ¥, =1 = Y@, In{]1 — ¥(©)],/(1 - ¥(@)],)}.
(13)

The inverse FT of the basis set thus provided the initial
estimate |Y/(r) — 1|,, and new phase estimates corre-
sponding to |¥(r)—1|, were obtained by FT following
application of (13). This was then iterated in order to
assign phases to all non-basis reflections. While a more
rigorous justification of (13) would be based upon the
arguments mentioned earlier in connection with (8) and
(9), a simpler interpretation is to consider this as a
sharpening function that finds real-space distributions
that contain peaked or atom-like features and are
consistent with the diffraction data.

In the normalizations of the diffracted amplitudes
|W(h)| to obtain unitary and normalized structure factors
[[U(h)|’s and |E(h)|’s], the kinematical atomic scattering
factors were used for lack of a more accurate dynamical
analog. (In general, while accurate normalization is
desirable it is not critical.) For the phase extension via
(13), the raw data were normalized to obtain windowed
unitary structure factors as described elsewhere (Marks
& Landree, 1998). Nevertheless, in order to counteract
the uncertainty in normalization, the raw dynamical
structure factors (plus phases) rather than the U(h) were
used in calculating the figure of merit (FOM).

FOM = 3/, () = B, () / S /1%, (. (14)

72

I+ + 1 [ o

9% 128 160 192 224 256 288 320 352 384
- - - - 4+ 4+ + + - -
+ + + + - - + + + 4+
+ + o+ o+ - - + o+ o+ 4+
-+ o+ o+ o+ - = =+ 4
+ + + o+ 4+ o+ o+ o+ o+ 4
+ + o+ O+ o+ o+ o+ o+ 4+ 4+
— - — — — J’_ — — — —
- - - - - 4+ 4+ + - -
+ + o+ o+ o+ o+ o+ o+ = =

In (14), the prime on the sums indicates exclusion of
h = 0 and B is a constant that is chosen to minimize the
FOM. The FOM is calculated at each iteration of (13)
and is a test of the self-consistency of the solution. The
greater the departure of the diffraction set W, (h)
following application of (13) from a rescaled version of
the prior W, (h), the larger the FOM will be. Iteration of
(13) is continued as long as the FOM decreases. The
FOM also serves as a parameter to optimize the basis set
using the genetic algorithm.

A final measure taken to assist in convergence to
solutions reflecting peaks of |1 — (r)| was the fixing
of some phases from a HRTEM image. (Direct
methods in the absence of additional phase informa-
tion from HRTEM were found to be considerably less
reliable for correctly indicating atomic positions.) The
phases fixed were taken from an experimental image
of (Ga,In),SnOs along the monoclinic b axis, which
was used in solving the structure (Sinkler et al., 1998).
Image phases were obtained, after lattice averaging,
from an image taken at Scherzer defocus. An origin
refinement was used to minimize the deviation from 0
and 180° consistent with centrosymmetry. The phases
fixed were chosen to satisfy:

(i) phase deviating less than 25° from 0 or 180°;

(i) spatial frequency less than 0.45 A™";

(iii) amplitude greater than 5% that of the strongest
beam in the image Fourier transform.

This allowed fixing of 17 of the strongest beams in the
diffraction data set. One additional beam, the (402), was
fixed based on a strong X; relationship. Table 4 shows
the beams whose phases were fixed, as well as the
evolution in the phases of these beams in the calculated
|1 — ¥ (r)| with thickness; in agreement with Fig. 4, the
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phases of these beams are reasonably stationary with
depth.

Direct methods were employed on simulated data sets
including 193 beams to a 1.0 A resolution. The top 20
solutions based on the FOM optimization were stored

for inspection. Fig. 8 shows solutions from calculated
dynamical diffraction intensities for (Ga, In),SnOs
corresponding to the same thicknesses for which
|1 — ¥(r)| is shown in Fig. 5. In plotting the solutions, the
|W(h)| from the multislice calculation is provided with

Fig. 8. Phasing solutions
obtained using calculated
diffraction intensities for
thicknesses corresponding
to Fig. 6. The rankings of
the solutions by FOM is
given in Table 5.
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Table 5. Analysis of phasing solutions for (Ga, In),SnO5

Thickness Thickness Rank of Peaks with height Peaks at Peaks at Spurious
(slices) (A) solution >40% of max. cations O atoms peaks
8 12.6 2 12 12 0 0
24 37.9 1 20 2 18 0
48 75.8 1 24 3 20 1
72 113.8 1 22 2 18 2
128 202.2 4 20 0 20 0
160 252.8 1 18 0 18 0
192 303.4 2 18 0 16 2
224 3539 16 17 0 10 7

phases from direct methods and reverse Fourier trans-
formed. The choice of the solutions from among the top
20 is unavoidably subjective, as the structure is now
known [it was not when this work was first performed
(Sinkler et al., 1998)]. Nevertheless, it was found that,
over a broad range between 24 and 192 layers (38—
300 A) thickness, a solution clearly showing at least 16 of
the 20 O-atom positions was among the top four solu-
tions. This is shown in Table 5, which presents an
analysis of the solutions in Fig. 8, as well as of several
other solutions for additional thicknesses. Table 5 lists
the number of peaks in the solution whose heights are
within 40% of the maximugn, as well as the number of
these that were within 0.6 A of either a cation or an O
atom in the structure. To counter the subjectivity in
selecting the solutions, it should be noted that those that
do not accurately reflect the structure can often be
picked out simply by a more streaked appearance.
Additionally, in many cases in which some of the O
atoms were not located near a strong enough peak in the
solution to appear in Table 5, they were indicated by
weaker peaks.

Based on comparison of Fig. 6 and Fig. 8, the
appearance of |1 — ¥(r)| is an excellent guide to the
structural features that phasing may be expected to find.

O oxygen e lin
o gallium o indium/gallium

Fig. 9. View of (Ga, In),Sn;0;, structure in [010] projection.

For a thickness of 12.6 A, the phasing solution correctly
locates cations (all but two of the Ga atoms, which are
nevertheless present as weaker peaks in the phasing
map). This is consistent with the dominance of the
cations in [1 — v(r)| at this thickness. For thicknesses
between 76 and 253 A (48 to 160 slices), peaks in the
solutions are consistently found at 18 or more of the 20
O-atom positions, reflecting the dominance of peaks at
O-atom positions in |1 — y(r)| throughout this range.
Finally, |1 — ¥(r)| begins to show strong features not
related to the structure at thicknesses greater than
300 A; presumably the unbound states can no longer be
ignored. This again is clearly reflected in the phasing
solutions for thicknesses beyond 300 A in a pronounced
drop in the number and ranking of solutions that have
peaks in agreement with atom positions.

The availability of phasing maps such as shown in Fig.
8 is clearly of great value towards solving a crystal
structure. An example of a phasing solution obtained
using experimental electron diffraction intensities from
(Ga, In),SnOs has already been shown as Fig. 1 (Sinkler
et al., 1998). While the solution was ranked seventh, it
was easily selected on inspection based on the occur-
rence of sharp round peaks. The solution clearly shows
all 20 O atoms of the (Ga, In),SnOs structure. Subse-
quent Rietveld refinement of neutron diffraction data
confirmed to within 0.27 A the accuracy of the O-atom
positions taken from the phasing map in Fig. 1 (Sinkler
et al., 1998; Edwards et al., 1998). Fig. 10 shows two
phasing solutions from experimental data on the
(Ga, In),Sn;0, structure (Edwards et al., 1998), which
is shown in a ball-and-stick model in Fig. 9. In that case,
no single solution showed all the O-atom positions,
perhaps because diffraction data were only collected to
0.77 A", Fig. 10 shows the 3rd- and 13th-ranked solu-
tions. Fig. 10(a) has 16 peaks and two additional peaks
that are weaker than 40% of maximum, for a total of 18
(crosses in Fig. 10a). All agree well with 18 of the 24 O
atoms in Fig. 9. Fig. 10(b) has most peaks in agreement
with Fig. 10(a) but has four additional peaks at the
positions marked with crosses. Combining these two
solutions thus provides approximate positions for 22 of
the 24 O atoms.

The ability of direct methods to locate the O atoms
using experimental electron diffraction demonstrates
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that the technique does not depend on ideal modeled
intensities but is also tolerant of errors associated with
collection of the data. Such errors arise not only due to
limitations of the collection medium [photographic film
— for details on data collection see Xu et al. (1994)] but
also from imperfect crystal tilt and from some averaging
over thickness that is unavoidable even using very small
spot sizes. With regard to averaging over thickness, it is
possible that this actually enhanced the sensitivity of the
technique for O atoms in the experimental cases. This
might be expected because the frequencies of oscilla-
tions in |1 — ¥(r)| at cation positions are faster than at
O-atom positions, as shown in §3, Fig. 7. Averaging over
thickness would thus tend to decrease the intensity of
beams reflecting the cation distribution relative to those
emphasizing O atoms. Preliminary attempts at modeling
this averaging to investigate its effect on phasing did not
show any effect on the success rate of the phasing at
finding O-atom positions, but this lack of a clear effect
may be due to the rather high success rate without
averaging.

5. Discussion

The present work has indicated that a combination of
HRTEM and direct methods of strongly dynamical
electron diffraction intensities can constitute a powerful
means for detecting light atoms in bulk inorganic
materials. The physical basis for the detection of light
atoms has been investigated in this work and a satis-
factory explanation has been found using electron
channeling theory. Channeling effects are responsible
for the localization of peaks in the function |1 — ¥ (r)|
and the emphasis of light-atom columns in |1 — ¥(r)| can
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be attributed to a combination of dynamical channeling
and resolution-dependent effects. Two factors are
responsible for the ability of direct methods to restore
these peaks. The first is the rough scaling between the
diffraction amplitudes, the |W(h)|, and the Fourier
components of |1 — (r)|, as shown in §2. Secondly,
[1 — ¥ (r)| is a peaked function containing atom-like
features and is thus consistent with the direct-methods
approach. Because of the relationship between
[1 — ¥(r)| and direct-methods solutions using dynamical
intensities, the appearance of |1 — ¥(r)| may be used
with confidence as a basis for estimating whether direct
methods can provide useful structural information in a
given case.

From channeling theory, the localization of intensity
in |1 — ¥(r)| near to the projected positions of atomic
columns depends on the degree to which the structure
resolves into well separated atomic columns so it is clear
that the technique in its present form will work best for
such cases. This nevertheless includes a large number of
important ceramic materials, including for instance
superconductors, for which modeling has shown similar
success rates as for the Ga—-In-Sn—-O structures investi-
gated here. The ability of direct methods to locate light
atoms is all the more valuable as these are the most
difficult to locate by most other readily accessible
techniques, in particular X-ray diffraction.

Most of the salient points have already been covered
regarding the features of direct methods using strongly
dynamical electron diffraction. A brief comment is due
concerning the role of the present technique in a
structure determination. It should be cautioned that at
present the direct-methods results alone do not provide
a basis to judge whether a model structure is correct or

Fig. 10. Phasing solutions from experimental data for (Ga, In),Sn;Oy,. The peaks in the phasing solutions indicate the O-atom positions in the
final structure shown in Fig. 9. (a) 3rd-ranked solution showing peaks at 18 O-atom positions (crosses). (b) 13th-ranked solution showing an
additional four O-atom positions (crosses). Combining (a) and (b), 22 of a total of 24 O-atom positions are indicated.
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not. Corroboration of any structure model derived by
the present means must be sought using another tech-
nique. In cases in which the phase of interest is only
obtainable as a minority phase, confirmation of a
structure obtained with the aid of the present technique
can be sought via multislice simulation of HRTEM
images or quantitative HRTEM (Zhang et al., 1995).
Refinement of electron diffraction intensities (Zand-
bergen et al., 1994; Weirich et al., 1996) would also be a
convenient approach as the same data employed for
phasing could be used. However, as strongly indicated in
this work, any such refinement must take dynamical
effects into account. The strength of direct methods is
that they provide precisely what most techniques avail-
able for quantitative refinement lack, namely the ability
to suggest initial atom positions for light elements.

A final note is due on the necessity of setting
F(—h) = F*(h) and thus ignoring the complex nature of
the electron exit wave. While the present work has
applied direct methods in the context of a solution that
is real-valued, this is in fact not necessary, and the
approaches exemplified by (8) and (9) do not depend on
it. Allowing complex solutions is equivalent to phasing
double the number of spots, i.e. h and —h independently.
This can be approached in a completely analogous way
to normal direct methods and may in fact require rela-
tively minor modification of code. It may be possible to
devise algorithms that are specialized for phase exten-
sion in the complex case, permitting restoration of the
complex exit wave ¥(r) or the Babinet 1 — ¥ (r). Preli-
minary attempts at this have been made by the present
authors and are the subject of continuing research. To
extend further to thicker crystals would require a
reformulation to take account specifically of the
unbound states, a topic for further work.

APPENDIX A
Minimum relative entropy/Kullback-Leibler distance

While ‘maximum entropy’ has been used in a crystal-
lographic environment, we are not aware of the use of
the relative entropy or Kullback-Leibler (1951) distance
[also known as cross entropy, information divergence
and information for discrimination, see Cover &
Thomas (1991) for a much more detailed analysis] so a
little clarification is appropriate. Considering the stan-
dard definition of entropy or self-information (in real
space r) as:

S=-=> pmInpr) with > pr)=1 (15)
S = = {p@x)In[p(r)/e(p(r))] + (o(r))}

— > p(r) Infe(p(r))] + 1 (16)
= — > {p(x)In[p(r)/e{p(r))] + (p(r))}

— In[(p(r))]. (17)
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The relative entropy is the negative of the first term in
(17) and maximizing the conventional entropy is thus
equivalent to minimizing the relative entropy. More
usefully, the relative entropy as defined above is a metric
of the deviation of the distribution p(r) from flat and can
be used as such. The FOM used herein is the projection
of the relative entropy onto the set of measured reflec-
tions in reciprocal space.

To strengthen the algorithm further, we modify the
unitary structure factors in reciprocal space by a
‘window function” W(h) using U’(h), where

U'(h) = W(h)U(h). (18)

The window function (in real space) is defined to be an
eigensolution of the ‘relative entropy sharpening
operator’ O via the equation

A(r) % Ow(r) = A(r) * {w(r) In[w(r)/ (w(r))]}

= AA(r) x w(r), (19)

in which * is convolution and A(r) is the Fourier
transform of an aperture function surrounding the set of
measured reflections. For a set of identical non-over-
lapping atoms, with kinematical diffraction, the relative
entropy defined in this way is identically zero for the
true solution — we have built in a pattern-recognition
component. As such, the FOM is the log-likelihood
(Cover & Thomas, 1991, p. 18) of the error in the
hypothesis that a given solution corresponds to a set of
atoms.

There are very strong similarities to the Gerchberg—
Saxton (1972) and Fienup (1978, 1987) algorithms, as
well as the Sayre equation (Sayre, 1952), with the rela-
tive entropy sharpening operator applying a self-
consistent (for atoms) constraint on the solutions with a
self-consistency FOM. The construction

41 (r) = w0, (£) Infur, (1) / (1, (¥))]

is a relatively primitive first-order iterative solution for
zeros of the relative entropy used in a tangent-formula
update scheme; since we only want approximate solu-
tions, a primitive search is appropriate. (The radius of
convergence of the iterative scheme is finite so a search
over initial starting phases is required.)

The method has strong similarities to crystallographic
maximum-entropy approaches, for instance strong non-
linearities with the ability to interpolate unmeasured
reflections. Rather than a precise numerical optimiza-
tion of the (absolute) entropy and weak constraints on
the moduli of the structure factors, a loose optimization
is used via the iteration (20), with tight constraints on
the structure factors. The avoidance of any gradient
search for entropy maximization both simplifies and
increases the numerical speed.

(20)
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